Two Plus Two Older Archives simple probability exercise
 FAQ Members List Calendar Search Today's Posts Mark Forums Read

 Thread Tools Display Modes
#1
12-06-2002, 02:21 PM
 marbles Senior Member Join Date: Oct 2002 Location: Wauwatosa, WI Posts: 568
simple probability exercise

This one might be a little fun for the guys that are more of beginners in probability theory:

All numbers can be found at the "instant games" section of wilottery.com.

For a current scratch-off game, the wisconsin lottery gives the following odds of winning:

\$1 1:10
\$2 1:10
\$10 1:55
\$25 1:400
\$50 1:400
\$100 1:89,143
Grand prize 1:520,000

Question 1: If the Expected return on a \$1 ticket is 67.42 cents (or an E.V. of -32.58 cents, if you prefer), what is the payout for the grand prize?

Question 2: The site gives the odds of "winning" (payout greater than zero) as approximately 1:4.5. What are the odds of returning a profit on a \$1 ticket?

Question 3: What is the expected return on a ticket, given that you know it's a "winner" (payout greater than zero)? Hint: you'll need to solve question 1 first.

solutions later.
#2
12-06-2002, 02:59 PM
 Homer Senior Member Join Date: Sep 2002 Posts: 5,909

1) .6742 = 1*(1/11) + 2*(1/11) + 10*(1/56) + 25*(1/401) + 50*(1/401) + 100*(1/89144) + x*(1/520001)

.6742 = .6394529 + x/520001

x = (.6742 - .6394529) * 520001

x = \$18068.53

2) 1/5.5 - 1/11 = 2/11 - 1/11 = 1/11 or 10:1

3) Hmmm....do you have to solve one first? Since we know the EV (given in 1) and the odds of getting a payout greater than zero (given in 2), can't we solve it based on that information, like this...

(4.5/5.5)*0 + (1/5.5)*x = .6742

x = \$3.708

-- Homer
#3
12-06-2002, 04:10 PM
 marbles Senior Member Join Date: Oct 2002 Location: Wauwatosa, WI Posts: 568

I was afraid this might happen, since I used the term "odds," which has a few conflicting definitions. In this case, they are using the term as the inverse of the probability of occurring. For example, their "odds" of getting a \$1 winner being 1:10 should be translated as a probability of 0.1, or 1/10. This can be particularly frustrating for a good poker player, who knows that 10:1 pot odds are required for an event that has a 1/11 chance of occurring.

Other than that, I like the logic you used on all three solutions... Plug them in using the definition of odds I just gave, and I'm pretty sure you'll get the right answers.

I'm particularly curious what you get for #3, as your logic seems reasonable, although it's not how I solved it. I think you're right that you don't need the jackpot solution if you already have the E.V.
#4
12-06-2002, 04:39 PM
 PseudoPserious Senior Member Join Date: Oct 2002 Posts: 151

Here are Homer's answers using this definition of odds...
[WARNING: CUT and PASTE ERRORS MAY BE PLENTIFUL]

1) .6742 = 1*(1/10) + 2*(1/10) + 10*(1/55) + 25*(1/400) + 50*(1/400) + 100*(1/89143) + x*(1/520000)

.6742 = .67044 + x/520000

x = (.6742 - .67044) * 520000

x = \$1955.20

2) (chance of return &gt; 0) = (chance of return &gt;= 0) – (chance of return = 0)

1/4.5 - 1/10 = 20/90 - 9/90 = 11/90 or 12.22%

3) E.V. = (chance of zero payout) * (expected return on zero payout ticket) + (chance of non-zero payout) * (expected return on non-zero payout ticket)

(79/90)*0 + (11/90)*x = .6742

x = \$5.52

-- PP

"I am so smart. S-M-R-T..."
#5
12-06-2002, 04:50 PM
 Homer Senior Member Join Date: Sep 2002 Posts: 5,909

Thank you sir or madam.

-- Homey
#6
12-06-2002, 05:03 PM
 PseudoPserious Senior Member Join Date: Oct 2002 Posts: 151

I'm a boy!
#7
12-06-2002, 05:27 PM
 marbles Senior Member Join Date: Oct 2002 Location: Wauwatosa, WI Posts: 568
Solutions

1. Pseudo's modified version of Homer's answer is correct. The actual answer is \$2,000, but rounding errors kick it down to \$1,955 and change. (you'll get a lot closer if you use the expected return of .674286129..., but \$1955 is close enough).

2. Taking the sum of all of the probabilities, (1/10+1/10+1/55+1/400+1/400+1/89143+1/520000), you can confirm their approximation (the sum ~ .223, or 1/4.48). Since any \$1 "winners" offer zero profit, you subtract 1/10 from this total probability to get approx 0.12319 (the probability of the ticket being profitable). Take the inverse, and you'll see that 1 out of every 8.12 tickets makes money.
3. Doh, the boss is watching... Gotta get back to work. Will post solution later.

 Thread Tools Display Modes Hybrid Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is Off Forum Rules
 Forum Jump User Control Panel Private Messages Subscriptions Who's Online Search Forums Forums Home Two Plus Two     Two Plus Two Internet Magazine     About the Forums     MOD DISCUSSION     ISOP General Poker Discussion     Texas Hold'em     Beginners Questions     Books and Publications     Televised Poker     News, Views, and Gossip     Brick and Mortar     Home Poker     Poker Beats, Brags, and Variance     Poker Theory Limit Texas Hold'em     Mid- and High-Stakes Hold'em     Medium Stakes Hold'em     Small Stakes Hold'em     Micro-Limits     Mid-High Stakes Shorthanded     Small Stakes Shorthanded PL/NL Texas Hold'em     Mid-, High-Stakes Pot- and No-Limit Hold'em     Medium-Stakes Pot-, No-Limit Hold'em     Small Stakes Pot-, No-Limit Hold'em Tournament Poker     Multi-table Tournaments     One-table Tournaments Other Poker     Omaha/8     Omaha High     Stud     Other Poker Games General Gambling     Probability     Psychology     Sports Betting     Other Gambling Games     Rake Back     Computer Technical Help Internet Gambling     Internet Gambling     Internet Bonuses     Software 2+2 Communities     Other Other Topics Other Topics     Sporting Events     Politics     Science, Math, and Philosophy     The Stock Market

All times are GMT -4. The time now is 10:24 PM.

 Contact Us - www.twoplustwo.com - Archive - Top