Two Plus Two Older Archives  

Go Back   Two Plus Two Older Archives > Other Topics > The Stock Market
FAQ Community Calendar Today's Posts Search

Reply
 
Thread Tools Display Modes
  #1  
Old 03-01-2002, 09:22 PM
Guest
 
Posts: n/a
Default quant question



I own an at the money call option on IBM with 1 year to maturity. What is my 1 year expected return?
Reply With Quote
  #2  
Old 03-01-2002, 09:41 PM
Guest
 
Posts: n/a
Default Re: quant question



1) Get a finance book and look up black-scholls model.


2) Look up the value in a newspaper.


3) If you believe that IBM accounting is a bunch of BS, the value of an at the money call of any duration is zero. I personally see more downside than up in IBM calls.



Reply With Quote
  #3  
Old 03-01-2002, 10:13 PM
Guest
 
Posts: n/a
Default at-the-money on forward price, right?



The difference of the price below the expected price - based on IBM's implied volatility - at expiration, would be something more than the risk-free rate, but something less than the volatility-adjusted rate, based purely on the massive SD of the call.


To take a wild guess, I think buyers would equal sellers... when...


It is so easy to hedge, meaning there should be pure interest-rate buyers, but it should also be easy to manufacture.


But you already own it, so its immediate utility is the bid. I would say that, for foregoing that bid - and hoping instead to assign - you will probably expect to make double the risk-free rate over hitting the bid and buying t-bills, and even more than if you rolled it into distressed CP, for instance.


Moreover, your expected return might be slightly lower if it is at-the-money at the cash price.


But I'll have to think about that...


Cool question!


eLROY
Reply With Quote
  #4  
Old 03-02-2002, 01:28 PM
Guest
 
Posts: n/a
Default GeorgeF



1) spell the name right

2) todays value has nothing to do with my expected value

3) This is completely wrong.


Do you know the definition of expected value?
Reply With Quote
  #5  
Old 03-02-2002, 04:45 PM
Guest
 
Posts: n/a
Default Re: quant question



The call option gives you leverage on the underlying. For those who are familiar with Black Scholes, you know that N(d2) the risk neutral probability of exercise. In the d2 formula, change the drift from the risk free rate to the expected drift and you get the probability that your call will expire in the money. For the payout, for all S>K, you have a probability density function. Multiplying P(S(x))*(S(x)-K) will give you the expected payout of your derivative.


What about the 6 month expected return?
Reply With Quote
  #6  
Old 03-02-2002, 08:46 PM
Guest
 
Posts: n/a
Default Re: quant question



Do you plan to hold it to expiration?
Reply With Quote
  #7  
Old 03-02-2002, 10:02 PM
Guest
 
Posts: n/a
Default you missed the point, I think...



Javelin,


It seems you computed the expected payout, but not the immediate popular utility for that future payout. Meaning, you forgot to subtract the immediate bid, and compare the resulting difference to the immediate bid, to get the expected return that payout represents.


So the real question - if I am not mistaken - is what is the immediate bid? Ordinarily, such a volatile payout would command a large risk premium. But natural hedges exist by which you can filter out the brownian motion, and capture only the risk-free drift.


In other words, calls, purchased in combinations with short puts and short stock - with stock proceeds invested in an interest-bearing account - should yield something near the risk-free rate, right? Meaning, people will bid the call up to where they can short the stock and sell the put and do a hair better than T-bills.


So is the call too expensive for someone who doesn't hedge? Not if he has asymmetric beliefs 1) about the underlying, or 2) about the future implied-volatility beliefs of prospective bidders. But of course, since he doesn't hedge the Brownina motion, he is looking at a different payout distribution entirely, apart from just mutation in the carry curve.


Moreover, it seems there would be special risk-spread or utility curves for asymmetric or skewed volatility. The utility of the call as a leg of the synthetic T-bill is theoretically about the same as the utility of the call as leverage on the underlying. Otherwise, you need to jack up vega in the put and the call... Plus, you have ...


Am I out of my element on this one?


eLROY
Reply With Quote
  #8  
Old 03-02-2002, 10:41 PM
Guest
 
Posts: n/a
Default Expert Answer



You want the expected payout on a call option. Samuelson originally assumed the option is discounted at one constant rate and the stock is discounted at another. Black and Scholes then solved their equation by discounting everything at the riskless rate.


You can calculate the expected call payout with the Black-Scholes formula using the expected future stock price instead of the current stock price and setting the riskless rate equal to 0. If the expected continuously compounded stock return is "mu", volatility is "sigma", and current at-the-money stock price is "S", then the answer is


S*exp(mu)*N(mu/sigma+.5*sigma) - S*N(mu/sigma-.5*sigma),


which is approximately .4*sigma*S when mu=0.
Reply With Quote
  #9  
Old 03-02-2002, 11:18 PM
Guest
 
Posts: n/a
Default assumptions (Re: Expert Answer)



This answer assumes that the option is held to expiration, and the distribution of the underlying is log normal, with known future volatility. The poser can decide to use these assumptions; but it's also possible to make other assumptions.
Reply With Quote
  #10  
Old 03-03-2002, 10:57 AM
Guest
 
Posts: n/a
Default Re: you missed the point, I think...



The immediate bid, by which i presume you mean to be the price of the call option, is given by the Black Scholes formula(under certain assumptions).


The important point to make is that the price of a call has nothing to do with either the expected payout or utility functions. Its simply a no arbitrage argument between the option and a replicating portfolio of the underlying and a risk free security.



Reply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -4. The time now is 09:16 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.