Two Plus Two Older Archives  

Go Back   Two Plus Two Older Archives > General Gambling > Probability
FAQ Community Calendar Today's Posts Search

Reply
 
Thread Tools Display Modes
  #1  
Old 08-25-2005, 06:16 PM
RocketManJames RocketManJames is offline
Senior Member
 
Join Date: Nov 2002
Posts: 118
Default A Stupid(?) Question

Sum of Geometric Series converges when C < 1. One of the proofs of this that I learned back in school follows.

So, S = C^0 + C^1 + C^2 + ...
C*S = C^1 + C^2 + C^3 + ...
S - C*S = C^0
S = C^0 / (1 - C) = 1 / (1 - C)

Now, comes the stupid question... how does this proof fail for C > 1? What is the reason why this proof is valid when C < 1 and invalid when C > 1? At C = 1, we clearly see that the answer is undefined... but at C > 1, S is equal to some negative number, which is obviously wrong. But, my question, lame as it may be, is exactly where is it that this proof becomes invalid?

Thanks.

-RMJ
Reply With Quote
  #2  
Old 08-25-2005, 06:22 PM
BruceZ BruceZ is offline
Senior Member
 
Join Date: Sep 2002
Posts: 1,636
Default Re: A Stupid(?) Question

[ QUOTE ]
Sum of Geometric Series converges when C < 1. One of the proofs of this that I learned back in school follows.

So, S = C^0 + C^1 + C^2 + ...
C*S = C^1 + C^2 + C^3 + ...
S - C*S = C^0
S = C^0 / (1 - C) = 1 / (1 - C)

Now, comes the stupid question... how does this proof fail for C > 1? What is the reason why this proof is valid when C < 1 and invalid when C > 1? At C = 1, we clearly see that the answer is undefined... but at C > 1, S is equal to some negative number, which is obviously wrong. But, my question, lame as it may be, is exactly where is it that this proof becomes invalid?

Thanks.

-RMJ

[/ QUOTE ]

When determining the sum of a series, it is necessary to show that the series converges, not just what the series would be equal to if it did converge. For C > 1, it is easy to show that the series does not converge, or more precisely, that the sequence of partial sums does not converge to a limit. S - C*S = C^0 doesn't make any sense when S and C*S are infinite.
Reply With Quote
  #3  
Old 08-26-2005, 01:49 PM
AaronBrown AaronBrown is offline
Senior Member
 
Join Date: May 2005
Location: New York
Posts: 505
Default Re: A Stupid(?) Question

This is an excellent question. BruceZ's answer is correct, in general you can have a set of perfectly legal steps that leads to an incorrect result if there in an infinity mixed in. But this case also has a more tangible answer. Do the finite case:

S = C^0 + C^1 + C^2 + ... + C^N
C*S = C^1 + C^2 + C^3 + ... + C^(N+1)
S - C*S = [C^0 - C^(N+1)]
S = [1 - C^(N+1)] / (1 - C)

If |C|<1 then C^(N+1) goes to zero as N goes to infinity. So the limit of the finite sum equals 1/(1 - C). Another way of saying that is the series converges to 1/(1 - C). But if |C| > 1 then the sum diverges, there is no finite limit.
Reply With Quote
  #4  
Old 08-26-2005, 02:16 PM
BruceZ BruceZ is offline
Senior Member
 
Join Date: Sep 2002
Posts: 1,636
Default Re: A Stupid(?) Question

[ QUOTE ]
This is an excellent question. BruceZ's answer is correct, in general you can have a set of perfectly legal steps that leads to an incorrect result if there in an infinity mixed in. But this case also has a more tangible answer. Do the finite case:

S = C^0 + C^1 + C^2 + ... + C^N
C*S = C^1 + C^2 + C^3 + ... + C^(N+1)
S - C*S = [C^0 - C^(N+1)]
S = [1 - C^(N+1)] / (1 - C)

If |C|<1 then C^(N+1) goes to zero as N goes to infinity. So the limit of the finite sum equals 1/(1 - C). Another way of saying that is the series converges to 1/(1 - C). But if |C| > 1 then the sum diverges, there is no finite limit.

[/ QUOTE ]

[1 - C^(N+1)] / (1 - C) is the sequence of partial sums which I mentioned. An infinite series is defined as the limit of a sequence of partial sums. This sequence of partial sums has no limit for |C| > 1, hence the series diverges by definition.

This definition brings more clarity to the elementary notion that an infinite series is something of the form x1 + x2 + x3 + .... as it makes clear what the "..." means, and helps prevent us from trying to sum series which don't converge. A similar notion allows us to make sense of such things as continued fractions:

1+1/(1+1/(1+1/(1+...

and continued square roots:

sqrt(1+sqrt(1+sqrt(1 + ...

BTW, both of these equal the golden ratio 1/2 + sqrt(5)/2.
Reply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -4. The time now is 08:42 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.